The zinc finger protein schnurri acts as a Smad partner in mediating the transcriptional response to decapentaplegic.
نویسندگان
چکیده
In Drosophila, a BMP-related ligand Decapentaplegic (Dpp) is essential for cell fate specification during embryogenesis and in imaginal disc development. Dpp signaling culminates in the phosphorylation and nuclear translocation of Mothers against dpp (Mad), a receptor-specific Smad that can bind DNA and regulate the transcription of Dpp-responsive genes. Genetic analysis has implicated Schnurri (Shn), a zinc finger protein that shares homology with mammalian transcription factors, in the Dpp signal transduction pathway. However, a direct role for Shn in regulating the transcriptional response to Dpp has not been demonstrated. In this study we show that Shn acts as a DNA-binding Mad cofactor in the nuclear response to Dpp. Shn can bind DNA in a sequence-specific manner and recognizes sites within a well-characterized Dpp-responsive promoter element, the B enhancer of the Ultrabithorax (Ubx) gene. The Shn-binding sites are relevant for in vivo expression, since mutations in these sites affect the ability of the enhancer to respond to Dpp. Furthermore we find that Shn and Mad can interact directly through discrete domains. To examine the relative contribution of the two proteins in the regulation of endogenous Dpp target genes we developed a cell culture assay and show that Shn and Mad act synergistically to induce transcription. Our results suggest that cooperative interactions between these two transcription factors could play an important role in the regulation of Dpp target genes. This is the first evidence that Dpp/BMP signaling in flies requires the direct interaction of Mad with a partner transcription factor.
منابع مشابه
schnurri is required for dpp-dependent patterning of the Drosophila wing.
The BMP-related ligand Decapentaplegic (Dpp) has a well-characterized role in pattern formation during Drosophila embryogenesis and in larval development. Previous work has shown that transcription of Dpp-responsive genes requires the activity of the BMP-specific Smad, Mothers against dpp (Mad). In this study we investigated the role of the zinc finger transcription factor Schnurri (Shn) in med...
متن کاملCTCF-dependent co-localization of canonical Smad signaling factors at architectural protein binding sites in D. melanogaster.
The transforming growth factor β (TGF-β) and bone morphogenetic protein (BMP) pathways transduce extracellular signals into tissue-specific transcriptional responses. During this process, signaling effector Smad proteins translocate into the nucleus to direct changes in transcription, but how and where they localize to DNA remain important questions. We have mapped Drosophila TGF-β signaling fa...
متن کاملThe Caenorhabditis elegans schnurri homolog sma-9 mediates stage- and cell type-specific responses to DBL-1 BMP-related signaling.
In Caenorhabditis elegans, the DBL-1 pathway, a BMP/TGFbeta-related signaling cascade, regulates body size and male tail development. We have cloned a new gene, sma-9, that encodes the C. elegans homolog of Schnurri, a large zinc finger transcription factor that regulates dpp target genes in Drosophila. Genetic interactions, the sma-9 loss-of-function phenotype, and the expression pattern sugge...
متن کاملConversion of an Extracellular Dpp/BMP Morphogen Gradient into an Inverse Transcriptional Gradient
Morphogen gradients control body pattern by differentially regulating cellular behavior. Here, we analyze the molecular events underlying the primary response to the Dpp/BMP morphogen in Drosophila. Throughout development, Dpp transduction causes the graded transcriptional downregulation of the brinker (brk) gene. We first provide significance for the brk expression gradient by showing that dif...
متن کاملschnurri is required for drosophila Dpp signaling and encodes a zinc finger protein similar to the mammalian transcription factor PRDII-BF1
Cytokines of the TGF beta superfamily regulate many aspects of cellular function by activating receptor complexes consisting of two distantly related serine/threonine kinases. Previous studies have indicated that Drosophila dpp uses similar signaling complexes and strictly requires the punt and thick veins receptors to transduce the signal across the membrane. Here, we show that the schnurri (s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental biology
دوره 227 2 شماره
صفحات -
تاریخ انتشار 2000